Specific cell wall proteins confer resistance to nisin upon yeast cells.

نویسندگان

  • S K Dielbandhoesing
  • H Zhang
  • L H Caro
  • J M van der Vaart
  • F M Klis
  • C T Verrips
  • S Brul
چکیده

The cell wall of a yeast cell forms a barrier for various proteinaceous and nonproteinaceous molecules. Nisin, a small polypeptide and a well-known preservative active against gram-positive bacteria, was tested with wild-type Saccharomyces cerevisiae. This peptide had no effect on intact cells. However, removal of the cell wall facilitated access of nisin to the membrane and led to cell rupture. The roles of individual components of the cell wall in protection against nisin were studied by using synchronized cultures. Variation in nisin sensitivity was observed during the cell cycle. In the S phase, which is the phase in the cell cycle in which the permeability of the yeast wall to fluorescein isothiocyanate dextrans is highest, the cells were most sensitive to nisin. In contrast, the cells were most resistant to nisin after a peak in expression of the mRNA of cell wall protein 2 (Cwp2p), which coincided with the G2 phase of the cell cycle. A mutant lacking Cwp2p has been shown to be more sensitive to cell wall-interfering compounds and Zymolyase (J. M. Van der Vaart, L. H. Caro, J. W. Chapman, F. M. Klis, and C. T. Verrips, J. Bacteriol. 177:3104-3110, 1995). Here we show that of the single cell wall protein knockouts, a Cwp2p-deficient mutant is most sensitive to nisin. A mutant with a double knockout of Cwp1p and Cwp2p is hypersensitive to the peptide. Finally, in yeast mutants with impaired cell wall structure, expression of both CWP1 and CWP2 was modified. We concluded that Cwp2p plays a prominent role in protection of cells against antimicrobial peptides, such as nisin, and that Cwp1p and Cwp2p play a key role in the formation of a normal cell wall.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protein Defense Systems against the Lantibiotic Nisin: Function of the Immunity Protein NisI and the Resistance Protein NSR

Lantibiotics are potential alternatives to antibiotics because of their broad-range killing spectrum. The producer strain is immune against its own synthesized lantibiotic via the expression of two proteins LanI and LanFEG. Recently, gene operons are found in mainly human pathogenic strains, which confer resistance against lantibiotics. Of all the lantibiotics discovered till date, nisin produc...

متن کامل

Novel mechanism for nisin resistance via proteolytic degradation of nisin by the nisin resistance protein NSR.

Nisin is a 34-residue antibacterial peptide produced by Lactococcus lactis that is active against a wide range of gram-positive bacteria. In non-nisin-producing L. lactis, nisin resistance could be conferred by a specific nisin resistance gene (nsr), which encodes a 35-kDa nisin resistance protein (NSR). However, the mechanism underlying NSR-mediated nisin resistance is poorly understood. Here ...

متن کامل

Transcriptome analysis reveals mechanisms by which Lactococcus lactis acquires nisin resistance.

Nisin, a posttranslationally modified antimicrobial peptide produced by Lactococcus lactis, is widely used as a food preservative. Yet, the mechanisms leading to the development of nisin resistance in bacteria are poorly understood. We used whole-genome DNA microarrays of L. lactis IL1403 to identify the factors underlying acquired nisin resistance mechanisms. The transcriptomes of L. lactis IL...

متن کامل

Comparison of cell wall proteins in putative Candida albicans & Candida dubliniensis by using modified staining method & SDSPAGE

 Background: Candida species are among the most common causes of opportunistic fungal diseases. Among Candida species, Candida albicans is responsible for most infections. Having many strains, C. albicans is very polymorph. C. dubliniensis is very similar to albicans species both morphologically and physiologically. For an infection to occur, cell wall proteins play an important role as they en...

متن کامل

TelA contributes to the innate resistance of Listeria monocytogenes to nisin and other cell wall-acting antibiotics.

Nisin is a class I bacteriocin (lantibiotic), which is employed by the food and veterinary industries and exhibits potent activity against numerous pathogens. However, this activity could be further improved through the targeting and inhibition of factors that contribute to innate nisin resistance. Here we describe a novel locus, lmo1967, which is required for optimal nisin resistance in Lister...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 64 10  شماره 

صفحات  -

تاریخ انتشار 1998